Recommended Methods of Ice Road Construction Based on Analysis of Disturbance to Vegetation and Active Layer

Laurence C. Byrne and Gary Schultz
Alaska Department of Natural Resources
Length of Ice Roads Constructed on the North Slope of Alaska

Winter Year

Miles

Tundra Ice Road
Offshore Ice Road

300

9 6

23 42 97

49 37 43 22

76 49 89 102

49 37 43 22

76 49 89 102
1969 -2001 Criteria for Opening Tundra

- 6” Snow Depth
- 12” Frost Penetration
- Frost Depth Determined by Use a Slidehammer Penetrometer
- Same Tool Highway Departments Use To Determine if Roadbed is Hard Enough to Pave
2002 - Present Criteria for Opening Tundra

- New Criteria Based on Results of Department of Energy Funded Project on the North Slope
- -5°C Soil Temperature at 30 cm Depth Instead of Using the Slidehammer Penetrometer
- 6” or 9” of Snow Depth Depending On Location On The North Slope
- Divided State Lands into 4 Tundra Opening Areas That Could Be Opened Independently Depending on Conditions
Locations where DNR has studied the effects of ice roads and ice pads

- ConocoPhillips Placer and Kerr-McGee 2-Bit (Aturuq)
- ConocoPhillips Demonstration Ice Road Project
 Alpine Pre-packed Ice Road 2004-05
- Totale Ice Pad and Road
- Pioneer Cronus
- Pioneer Oooguruk
- Pioneer Storms Project
- ConocoPhillips Antigua and SnowWalker Test
- Anadarko Hot Ice
- Brooks Range Sakonowayak
2002 DNR – ConocoPhillips Cooperative Demonstration Ice Road Project

• Using their own techniques ConocoPhillips determined when they thought the tundra should be opened (Dec 22, 2002)

• DNR allowed them to build a 1-mile section of the Alpine Ice Road before tundra opening

• Rest of Alpine Ice Road was finished when DNR opened the tundra (Jan 22, 2003)

• DNR went back to sample along the ice road route the following four summers
Demonstration Ice Road Project Study Area

Standard Section
1 Mile Long
Built Jan 22, 2003

Demonstration Section
1 Mile Long
Built Dec 22, 2002
1 m x 5 m Sample Plot
Variables Sampled

% Cover
- Litter / Dead
- Bare Ground
- Moss
- Canopy
- Deciduous Shrub
- Forb
- Water
- Lichen

Active Layer (5 per Plot)
- Depth Measurement (inches)

Disturbance Rated (0-3 Scale)
- Litter / Moss (5 1-meter Transects and Per Plot as a Whole)
- Exposed Soil (5 1-meter Transects and Per Plot as a Whole)
- Tussock (Individual and Per Plot as a Whole)
- Hummock (Individual and Per Plot as a Whole)
No Significant Post Ice Road Effects in Wet Sedge Tundra
Significantly Deeper Active Layer Depths in Moist Sedge – Dwarf Shrub Tundra
2002 Ice Road Scrape
Recovery
2003 to 2006
Tussock Tundra - High Levels of Disturbance
Especially on Ice Roads That Were Not Pre-Packed
Tussock Disturbance Ratings

Level 0 - Undisturbed

Level 1 - Scuffed

Level 2 – Cracked or smashed

Level 3 – Crushed or removed
Pre-Packing route when sufficient snow is present

- Technique where a lightweight vehicle drives up and down the ice road route compacting the snow
- Allowed to set up at least 5 days depending on ambient temperature
- Drives frost into ground faster (-5C)
- Secures snow in place during high wind events
- Can increase tundra travel season by several weeks
Alaska North Slope Winter Exploration Season Length

- **Season Length**
- **Ice Road Season**

![Bar chart showing the length of the winter exploration season on the North Slope of Alaska from 1985 to 2006.](image-url)

- The chart displays the number of days in the season length and the ice road season for each year from 1985 to 2006.

Year	Season Length	Ice Road Season
1985 | 180 | 120
1986 | 190 | 150
1987 | 200 | 180
1988 | 190 | 170
1989 | 180 | 160
1990 | 170 | 150
1991 | 160 | 140
1992 | 150 | 130
1993 | 140 | 120
1994 | 130 | 110
1995 | 120 | 100
1996 | 110 | 90
1997 | 100 | 80
1998 | 90 | 70
1999 | 80 | 60
2000 | 70 | 50
2001 | 60 | 40
2002 | 50 | 30
2003 | 40 | 20
2004 | 30 | 10
2005 | 20 | 0
2006 | 10 | 0

Days
Methods of Ice Road Construction
(In Order of Least Disturbance to the Tundra)

#1. Pre-packing and Side Casting Water from a Rolligon

• Least disturbance to tussocks of any technique

• In 2003 Totale was able to complete ice road construction before DNR opened the tundra
Pre-packing ice road construction techniques (besides side-casting water)

2. Water applied directly onto packed area
 • Useful for projects using lightweight rigs
 • 2005 Pioneer Storm Project gained over 5 weeks using this technique

3. Break up packed snow prior to applying water
 • Gets rid of voids in packed snow
 • Used for heavy duty, thick ice roads where an assembled rig is transported
 • We suspect tussocks damaged when snow is broken up

4. Pre-pack, but operate on adjacent unpacked snow
 • Problems with repeated trips and snow erodes
 • Not recommended by DNR,
 • Temporarily shut down one project to change their method
No Pre-packing Ice Road Construction Techniques

#5. Standard Ice Road Construction

- Construction after tundra is opened by DNR
- ‘Walk’ front end loader to break up snow slabs and consolidate snow in gullies
- Light water trucks apply first layer of ice, followed by heavier water trucks
- Tussocks are often scuffed, broken or removed

#6. Early Season Standard Construction

- Used only once in recent years: CPAI Demonstration Project
- High levels of tussock disturbance due to timing
Take Home Message

- Prepack Prepack Prepack
- Extends the tundra travel season
- Can begin iceroad construction before DNR opens the tundra
- Could mean more wells drilled per season, and therefore at a lower cost per well
- Offers superior protection to tundra
End of presentation